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A systematic use of binary codes derived from the Hägg symbol are used to

study close-packed polytypes. Seitz operators acting over the corresponding

binary codes are defined and used. The number of non-equivalent polytypes of a

given length are calculated through the use of the Seitz operators. The same

procedure is applied to the problem of counting the number of polytypes

complying with a given symmetry group. All counting problems are reduced to

an eigenvector problem in the binary code space. The symmetry of the binary

codes leads to the different space groups to which polytypes can belong.

1. Introduction

The densest packing of spheres in three dimensions is known

to be (and recently proved by Hales, 2002) the so-called close

packing of spheres. In a close-packing arrangement, hexagonal

layers of spheres are stacked in one direction in such a way

that the spheres on one layer rest over the voids of the layers

below and above it (Pandey & Krishna, 2004).

In crystallography, the interest in close packing derives from

the fact that many structures can be described as such. The

simplest examples of periodic close-packed structure are the

face-centred cubic and the hexagonal close packed. Both

arrangements are also the only ones where every layer is

crystallographically equivalent to any other layer in the stack.

The close-packed hexagonal layer can be stacked in more

complex arrangements than the face-centred cubic and the

hexagonal close packed. For a given number of layers P, there

will be a finite number of possible, crystallographically non-

equivalent, stackings. We will call this number �ðPÞ. Each

stacking sequence counted in �ðPÞ will represent a different

close-packed polytype.

The problem of finding �ðPÞ has been solved by a number

of authors by exhaustive generation and counting (Brown &

Bailey, 1962; Lima de Faria & Figueiredo, 1969; Smith &

Rinaldi, 1962; Thompson & Downs, 2001). Exhaustive

generation is an unrealistic approach for large periodicities as

the number of trial structures grows as 2P. Other methods

avoiding direct enumeration have been used, most notably by

Iglesias (1981) through the use of combinatorial techniques

and McLarnan (1981) through group-theoretical methods.

It is also known that all monoatomic close-packed

arrangements can be classified into eight possible space

groups: P3m1, P�33m1, P�66m2, P63mc, P63=mmc, R3m, R�33m and

Fm3m. The deduction of the possible space groups is usually

referred to the classical paper of Belov (taken from Pandey &

Krishna, 2004, and references therein).

Close-packed arrangements can be coded into binary

sequences in different ways (Verma & Krishna, 1966). The two

most used ones are the following.

(i) To code each layer according to its surroundings.

According to the nearest neighbours, two surroundings are

possible, one called the hexagonal surrounding, where the

layers above and below are in equivalent positions, and the

cubic surrounding, where the layers above and below are in

different positions.

(ii) The binary code is derived from the Hägg symbol, where

to any pair of layers a þ or � code can be assigned if the pair

forms a ‘forward’ sequence or a ‘backward’ sequence.

In any case, the coding of close-packed arrangements into a

binary sequence allows one to translate the study of close

packing into the realms of coding theory (and related fields of

number theory and combinatorics) and to define a proper

algebra acting over the binary codes.

In this paper, we will explore the symmetry and other

properties of periodic close packing through the use of its

binary code. Seitz operators will be defined acting over the

binary codes taken as vectors. The introduction of the Seitz

operators will allow calculation of �ðPÞ as an eigenvector

problem in a straight-forward manner. The possible space

groups of close-packed sequences will be viewed as a result of

the possible symmetries of the binary codes. We will also make

use of the Seitz operators to calculate the number of polytypes

complying with a specific symmetry group. The examples

studied in the paper will prove the power of the binary coding

and its algebraic approach to the study and understanding of

close packing.



2. Close packing

In a close-packed structure, hexagonal layers can occupy three

different locations, usually labelled A, B and C (Verma &

Krishna, 1966). The stacking arrangement can be coded

indicating for each layer which position is occupied (e.g.

ABACABACABAC). In the case of periodic stacking, it will

suffice if we represent the code of a repeating unit of the stack

(for the above example ABAC). Translational periodicity also

implies that where we start the code is irrelevant, so two

distinctive codes that can be brought to coincidence by a cyclic

rotation of one of the codes represent the same arrangement

(e.g. ABAC! ACAB). In terms of the letter code, the close-

packed condition is the impossibility of having the same letter

consecutively in the code. The close-packed condition toge-

ther with the translational periodicity also impedes a code

starting and ending with the same letter.

As the labels are irrelevant as long as consistency is kept,

any permutation of two letters will give rise to the same

arrangement, so a family of codes of the same length that can

be brought into coincidence by a permutation of letters will

represent the same stacking (e.g. ABCB! BACA).

The Hägg code is a binary notation that can be derived from

the ABC notation (Pandey & Krishna, 2004). In terms of

coding, we can translate the letter code to a Hägg code

following the rule: AB, BC and CA toþ and AC, CB, BA to�.

In such a way, a binary code can be constructed for any

stacking sequence (e.g. ACABC!�þþþþ). Instead of

using þ and � signs, the binary code can be replaced by 0’s

and 1’s (e.g. �þþþþ! 01111). This binary coding has

been used for Monte Carlo modelling of polytype phase

transformation (see for example Shrestha & Pandey, 1996,

1997). In this paper, the binary code will be represented

between j> (e.g. j01111>) or, in the case that the binary

representation is too long, by its decimal equivalent, stating

explicitly the length of the code in case ambiguity arises e.g.

j01111>! j15>5.

The equivalence conditions given by the letter permutations

or the cyclic shift can now, in terms of the binary code, be given

by the following rules:

1. Two binary codes are equivalent if they can be brought

into coincidence by permuting the two digits (e.g.

j101100> ¼̂¼ j010011>, where ¼̂¼ means crystallographically

equivalent). This symmetry operation will be called a negation

and be represented by the symbol �P̂P, where P is the length

of the code over which the operation is acting.

(�6̂6j101100> ¼ j010011>).

2. Two binary codes are equivalent if they can be brought

into coincidence by a reversion of the code (e.g.

j101100> ¼̂¼ j001101>). This symmetry operation will be

represented by the symbol P̂PI (e.g. 6̂6Ij101100> ¼ j001101>).

3. Two binary codes are equivalent if they can be brought

into coincidence by a cyclic shift of the code (e.g.

j101100> ¼̂¼ j011001>). This symmetry operation will be

represented by the symbol n̂n, where n̂n is an integer number

representing the number of places shifted to the left (e.g.

3̂3j101100> ¼ j100101>).

Sometimes is useful to know the number of ‘forward’

displacements or the number of 1’s in a code; we will denote

such a number by #1, conversely the number of 0’s or ‘back-

ward’ displacements will be denoted by #0, obviously

#1 þ #0 ¼ P, where P is the number of layers in the repeating

unit, or number of symbols in the code.

Binary codes can be further compacted by a run length

encoding procedure known in crystallography as the Zhdanov

symbol (Pandey & Krishna, 2004). We will not dwell on the

properties of Zhdanov symbols in this paper.

3. The neutrality condition

The close-packed condition, together with the translational

periodicity, constrains the valid binary codes to those that

comply with

#s ¼ #1 � #0 ¼ 0 mod 3: ð1Þ

This condition will be called the neutrality condition. The

neutrality condition has been explained by Verma & Krishna

(1966). This condition implies that, from the set of 2P possible

binary codes of length P, only a subset will represent valid

polytypes. The number of elements �ðPÞ in such a set can be

found if we rewrite the neutrality condition as

P� 2#1 ¼ 0 mod 3: ð2Þ

According to the above equation, the neutrality condition is

equivalent to finding these codes with

#1 ¼ ðP� 3sÞ=2; ð3Þ

where s is an integer number such that 0<#1 <P. This last

condition limits the value of s to �½P=3�< s< ½P=3�, where ½x�

represents the integer part of x.

As #1 is an integer number, (3) also implies that P� 3s must

be an even number and, therefore, P and s must have the same

parity.

(i) P and s ¼ 2s0 are even.

In this case,

#1 ¼ 3s0 � 3½P=6� þ P=2; ð4Þ

where 0< s0< 2½P=6�. For each value of s0, the number of

neutral codes will be given by the binomial coefficient

P

3s0 � 3½P=6� þ P=2

� �
:

The number of neutral codes of length P will then be given by

�ðPÞ ¼
X2½P=6�

s¼0

P

3s� 3½P=6� þ P=2

� �
: ð5Þ

(ii) P and s ¼ 2s0 þ 1 are odd.

In this case,

#1 ¼
Pþ 3

2
� 3
½P=3� þ 1

2

� �
þ 3s0; ð6Þ

where 0< s0< 2½ð½P=3� þ 1Þ=2� and as in the even case we will

then have
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�ðPÞ ¼
X2½ð½P=3�þ1Þ=2�

s¼0

P

3sþ Pþ3
2 � 3 ½P=3�þ1

2

� �� �
: ð7Þ

It is also useful to know the number of sequences of length

P that do not comply with the neutrality condition; two cases

can be found.

1. #1 � #0 ¼ 1 mod 3.

We will call the number of polytypes of length P complying

with the above condition �1ðPÞ and, following the same

reasoning that led to (5) and (7), the following expression can

be deduced:

�1ðPÞ ¼

PG1ðPÞ

p¼0

P
P�6pþ½ðPþ4Þ=6��4

2

� �
2jP

PG2ðPÞ

p¼0

P
P�6pþ½ðPþ1Þ=6��1

2

� �
26 jP;

8>>><
>>>: ð8Þ

where G1ðPÞ ¼ ½ðP� 4Þ=6� þ ½ðPþ 4Þ=6� and G2ðPÞ ¼

½ðP� 1Þ=6� þ ½ðPþ 1Þ=6�.

In (8), xjy (x6 jy) reads x is (not) a divisor of y.

2. #1 � #0 ¼ 2 mod 3.

We will call the number of polytypes of length P complying

with this condition �2ðPÞ. Taking into account that

�ðPÞ þ�1ðPÞ þ�2ðPÞ ¼ 2P; ð9Þ

we will have

�2ðPÞ ¼ 2P ��ðPÞ ��1ðPÞ: ð10Þ

4. Seitz operators for close-packed binary codes

A Seitz operator (Arnold, 2002), commonly used in crystal-

lography, acting over a vector jv> is an operator ŜS ¼ ðS; js>Þ,
where S is a P� P square matrix and js> is a vector of length

P such that ŜSjv> ¼ Sjv>þ js>.

If we now consider the binary code of length P as a vector

jb>P, we can also define a Seitz operator acting over jb>P as

ŜSjb>P ¼ Sjb>P þ js>P mod 2: ð11Þ

Again, S is a P� P matrix and js>P is a binary vector of length

P. The need for the mod 2 operation arises from the fact that

we are dealing with a binary representation of the stacking

sequence. The matrix component of the Seitz operator

represents a permutation, while the vector part could repre-

sent a negation or a null vector.

In terms of Seitz operators, the negation of a code will be

given simply by

�P̂P ¼ ðE; j2P � 1>Þ: ð12Þ

E is the P� P identity matrix and j2P � 1> will be a vector of

length P composed only of 1’s.

A cyclic rotation of p places will be given by

p̂p ¼ ð ~pp; j0>PÞ: ð13Þ

~pp is the cyclic shift matrix given by

~pp ¼

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0

: : . . . : : : . . . :
0 0 . . . 0 0 0 . . . 1

1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0

: : . . . : : : . . . :
0 0 . . . 1 0 0 . . . 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

|fflffl{zfflffl}
p

: ð14Þ

The reversion operation in terms of the Seitz operator will be

P̂PI ¼ ð~II; j0>PÞ; ð15Þ

where

~II ¼

0 0 0 : : : 0 0 1

0 0 0 : : : 0 1 0

0 0 0 : : : 1 0 0

: : : : : : : : :
0 0 1 : : : 0 0 0

0 1 0 : : : 0 0 0

1 0 0 : : : 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: ð16Þ

The reversion operation, together with the negation and the 1̂1

rotation, are the generators of a group in the mathematical

sense, of which (12), (13) and (15) form the basis of a repre-

sentation. We will call such a group CPP.

The action of CPP over the set of all possible codes of length

P will classify each code into a family of orbits of codes, each

family representing the same polytype.

The reversion operation P̂PI will form a cyclic group of order

2, the same will be true for the negation operation �P̂P. The

rotation operations form a cyclic group of order P with

generator 1̂1. The set of P rotations forms an invariant

subgroup of CPP. The order of one operation p̂p will be

P=g:c:d:ðP; pÞ, where g:c:d:ðx; yÞ stands for the greatest

common divisor of x and y.

The complete group of close-packed symmetries CPP will

contain, additionally to the reversion, negation and rotation

operators; the reversion–rotation operators p̂pI, negation–

rotation operators �p̂p and negation–reversion–rotation

operators �p̂pI. For polytypes of length P, the symmetry group

CPP will have order 4P.

The set of P reversion–rotation fp̂pIg do not form a subgroup

of CPP, yet the set of all rotation operations together with the

set of reversion–rotation operations do form a group which

will be denoted as fp̂pIg2. The fp̂pIg2 group is not Abelian and

p̂pI ¼ I dðPþ pÞðPþ pÞ. The order of an operation p̂pI will be 2.

The negation element �P̂P forms a cyclic subgroup CPP, this

group will be invariant, and CPP can be written as the direct

product of fp̂pIg2 and �P̂P. The set of operations f�p̂pg do not

form a subgroup of CPP, yet the set f�p̂pg together with the set

fp̂pg do form a normal subgroup of CPP, which will be denoted

by f�p̂pg. The order of a �p̂p operation is P=g:c:d:ðP; pÞ if such

division is even, and 2P=g:c:d:ðP; pÞ otherwise.
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5. The number of non-equivalent polytypes of length P:
C(P)

In order to count the number of distinctive polytypes (one of

each orbit) of length P, use will be made of the Burnside

lemma (Cauchy–Frobenius lemma) (McLarnan, 1981).

Let G be a finite group of order #G permuting a finite set K

of elements, then

�ðKÞ ¼
1

#G

X
g2G

#Kg
; ð17Þ

where �ðKÞ is, under the action of G, the number of non-

equivalent members of K. Kg is the set of all elements of K left

fixed by g and #Kg
is the order of Kg.

Following the Burnside lemma, the problem of counting the

number of distinctive polytypes of length P involves finding a

formula for #Kg
, for all g 2 CPP, where now K stands for all

neutral codes of length P.

�ðPÞ ¼
1

4P

XP

p¼1

f#Kp̂p
þ #K�p̂p

þ #Kp̂pI
þ #K�p̂pI

g �
X

di

�ðP=diÞ:

ð18Þ

The last term in (18) sums over all di divisors of P, and this

term avoids counting polytypes with period a divisor of P as

polytypes of length P.

We will now be calculating the number of neutral binary

codes that remain unchanged under a CPP operator. As is

common in algebra, these vectors can be obtained by solving

the eigenvector equation. In this case,

ŜSjb> ¼ jb>mod 2: ð19Þ

As already pointed out, of all the solutions of (19) only those

complying with the neutrality condition will be valid.

Let us consider an eigenvector jb> formed by P characters.

We will denote by ff g the set of characters left independent by

(19). #f characters will be free to take either the value 0 or the

value 1 and, once the choice is made for each ff g character, the

remaining P� #f will be fixed by (19). Let #mðfiÞ be the

number of characters fixed by the character fi. In the case of

CPP, all solutions to (19) relate one character bi from jb> with

one character fi, but the relation is not a one-to-one corre-

spondence. The neutrality condition will then be written as

P#f

i

#mðfiÞfi ¼ 0 mod 3: ð20Þ

In general, several fi can have the same multiplicity #mðfiÞ. The

neutrality condition will be governed by the combination of

terms in (20).

Let us consider some examples.

For the operation 3̂3 acting over codes of length 15, the

eigenvector equation reads

3̂3jb>15 ¼ jb>15 mod 2: ð21Þ

Solutions to (21) will be of the type

jb>15 ¼ jb1b2b3b1b2b3b1b2b3b1b2b3b1b2b3>:

The independent characters will then be fb1; b2; b3g and

#f ¼ 3. The multiplicity of all the independent characters is

#m ¼ 5 and the neutrality equation will be

5ðb1 þ b2 þ b3Þ ¼ 0 mod 3: ð22Þ

In order to satisfy (22), we will need

ðb1 þ b2 þ b3Þ ¼ 0 mod 3

and therefore there will be �ð3Þ possible combinations.

When all the independent characters ffig have the same

multiplicity #m, the neutrality equation will be

#m

P#f

i

fi ¼ 0 mod 3 ð23Þ

and two cases are possible:

(i) 3j#m: the neutrality condition is assured by the multi-

plicity, and the #f characters can take any value, there will be

2#f possibilities;

(ii) 36 j#m: the neutrality condition has to be fulfilled by the

sum of the #f characters, and the number of possible combi-

nations will then be �ð#f Þ.

Let us take a second example. Consider the operation 7̂7I

acting over the codes of length 16. The eigenvector equation is

then

7̂7Ijb>16 ¼ jb>16 mod 2: ð24Þ

The solution will be of the type

jb>16 ¼ jb1b2b3b4b5b4b3b2b1b6b7b8b9b8b7b6>:

ffig will be fb1; b2; b3; b4; b5; b6; b7; b8; b9g and #f ¼ 9. The

multiplicity of fb1; b2; b3; b4; b6; b7; b8g is 2 and the multi-

plicity of fb5; b9g is 1, the neutrality condition will then be

2ðb1 þ b2 þ b3 þ b4 þ b6 þ b7 þ b8Þ þ ðb5 þ b9Þ ¼ 0 mod 3

ð25Þ

and the following possibilities arise.

1. ðb1 þ b2 þ b3 þ b4 þ b6 þ b7 þ b8Þ ¼ 0 mod 3 and

ðb5 þ b9Þ ¼ 0 mod 3, we will then have �ð7Þ�ð2Þ combina-

tions.

2. ðb1 þ b2 þ b3 þ b4 þ b6 þ b7 þ b8Þ ¼ 1 mod 3 and

ðb5 þ b9Þ ¼ 1 mod 3, we will then have �1ð7Þ�1ð2Þ combina-

tions.

3. ðb1 þ b2 þ b3 þ b4 þ b6 þ b7 þ b8Þ ¼ 2 mod 3 and

ðb5 þ b9Þ ¼ 2 mod 3, we will then have �2ð7Þ�2ð2Þ combina-

tions.

Adding the three cases, we finally get

�ð7Þ�ð2Þ þ�1ð7Þ�1ð2Þ þ�2ð7Þ�2ð2Þ ð26Þ

possible neutral vectors jb>16 complying with (24).

If the solution to (19) leads to a neutrality equation of the

type

#m1

P#f1

j
1bj þ #m2

P#f2

j
2bj ¼ 0 mod 3; ð27Þ

then the possible cases are
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When the operator includes the negation operation, the

eigenvector equation does not necessarily have a solution. If

(19) has a solution, the independent characters come in pairs

of character-negated character, this guarantees the neutrality

condition, and there will be 2#f possible eigenvectors.

The examples above exhaust all possibilities for CPP.

Table 1 shows the values of �ðPÞ for values of P up to 25,

calculated by the above procedure using the eigenvector

equation (19); they are identical with those reported by

McLarnan (1981).

6. The symmetry of close-packed binary codes

Up to now, we have considered symmetry relations that

resulted from the equivalence conditions in the stacking

sequences. These conditions can be said to be based on the

‘interpretation’ of the codes as a representation of stacking

sequences and not based on the structure of the code itself.

According to this equivalence, two binary codes different in

appearance codify the same stacking arrangement. In this

section, we will deal with other types of symmetries, those that

result from the structure of the code itself.

Fig. 1 shows the symmetry elements in a single close-packed

plane, the hexagon, black triangle and inverted triangle

symbols represent a sixfold, threefold and threefold axis,

respectively. Each threefold axis represented in Fig. 1 inter-

sects only one of the two different types of interstitial sites

present in the layer. For the stacking arrangement, the exis-

tence of a sixfold axis and a threefold axis perpendicular to the

plane will be important as they can derive into 6k- and 3k-fold

screw axes when the stacking arrangement is taken into

account. Additional to these two symmetry operations, the

appearance, as a result of the stacking arrangement, of mirror

planes perpendicular to the stacking direction, and of inver-

sion centres, will have to be considered.

As in the previous section, if we wish to count the number

of polytypes complying with a given symmetry group, we can

make use of the Burnside lemma. The set of codes fKg over

which the CPP group acts will now all be neutral codes that

also comply with the restriction imposed by the additional

symmetries. Therefore we will be solving eigenvector equa-

tions of the type (19) together with additional equations of the

type

ĜGjb> ¼ jb>mod 2; ð28Þ

where ĜG will be the additional symmetry operator.

Patterson & Kasper (1959) have described the effect of the

different symmetry elements in the appearance of the Hägg

symbol which we will discuss in what follows.

6.1. Codes containing a 3k symmetry operation

The threefold axis in the close-packed plane brings an A

(B, C) position to coincidence with itself. The operation will

change a 1 (0) character to the same character 1 (0), it can be

considered as the identity operation acting over the code

characters. As a consequence of the threefold symmetry, a

3k-fold screw axis will be equivalent to a code jb>P formed by

the repetition k times of a code jr> of length ðP=kÞ:
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Table 1
Number of non-equivalent close packings �ðPÞ for different periodic
length P.

Numbers are identical to those reported by McLarnan (1981).

�ðPÞ P �ðPÞ P

1 0 21 8492
2 1 22 16409
3 1 23 30735
4 1 24 59290
5 1 25 112530
6 2 26 217182
7 3 27 415620
8 6 28 803076
9 7 29 1545463

10 16 30 2990968
11 21 31 5778267
12 43 32 11201472
13 63 33 21702686
14 129 34 42140890
15 203 35 81830744
16 404 36 159139498
17 685 37 309590883
18 1343 38 602935713
19 2385 39 1174779333
20 4625 40 2290915478

Figure 1
Close-packed layers and the sixfold and threefold axes. The hexagon,
black triangle and inverted triangle symbols represent a sixfold, threefold
and threefold axis, respectively. If we take the layer to be in an A position,
then hexagon corresponds to the A location ð0; 0Þ, black triangle to the B
ð1=3; 2=3Þ location and inverted triangle ð2=3; 1=3Þ to the C location.

#m1
mod 3 #m2

mod 3 No. of neutral codes

0 0 2#f1
þ#f2

0 6¼ 0 2#f1 �ð#f2
Þ

6¼ 0 0 2#f2 �ð#f1
Þ

1 1 �2ð#f1
Þ�1ð#f2

Þ

2 2 þ�1ð#f1
Þ�2ð#f2

Þ þ�ð#f1
Þ�ð#f2

Þ

2 1 �2ð#f1
Þ�2ð#f2

Þ

1 2 þ�1ð#f1
Þ�1ð#f2

Þ þ�ð#f1
Þ�ð#f2

Þ



where " represents the jr> code. jr> cannot be neutral as it

will then be the representative code of the stacking sequence

and not jb>. We will then have for the neutrality condition

k#sðjr>Þ ¼ 0 mod 3;

where #s can take values of 1 or 2 mod 3. k will have to be the

smallest non-zero integer such that

k ¼ 0 mod 3: ð29Þ

The only solution to (29) is k ¼ 3. If a code jb> is formed by

repeating identical blocks, then the only possibility is

The corresponding symmetry operator will be

R̂R ¼ ðgðP=3ÞðP=3Þ; j0>Þ; ð30Þ

which also corresponds to a 31-fold axis. It is clear that this

symmetry will only appear for codes of length a multiple of 3.

From the discussion above, the R̂R symmetry corresponds to

a stacking sequence formed by one block of layers repeating

itself along c. Each block will be shifted with respect to the

previous block by a vector given by the #s value of the block,

which can lead to a 1
3 aþ 2

3 b or a 2
3 aþ 1

3 b shift (see Fig. 1). This

sequence corresponds to a rhombohedral cell.

To count the number of non-equivalent sequences with such

symmetry, equation (28) reduces to

R̂Rjb> ¼ jb>mod 2: ð31Þ

6.2. Codes containing a 6k symmetry operation

The sixfold axis perpendicular to the stacking direction and

passing through a layer position for example A (B, C), will

bring the B (C, A) layer to coincidence with a C layer (A, B).

The operation will then change a 1 (0) character to a 0 (1)

character. The 6k-fold screw axis acting over a code will result

in a code of the form:

where " represents the negated " code. It is immediately clear

from the expression above that the only choice compatible

with the neutrality condition and the minimum-length-code

criteria will be 63, and the code will be of the form

The corresponding Seitz operator will be given by

6̂63 ¼ ð
gðP=2ÞðP=2Þ; j1>Þ ð32Þ

and the eigenvector equation (28),

�dðP=2ÞðP=2Þjb> ¼ jb>: ð33Þ

The number of codes with this symmetry will be different from

zero only for even values of P.

6.3. Codes containing a �11 symmetry operation

A �11 symmetry operation at the centre of the code will bring

a 1 (0) character in a þz position of the code to a 1 (0)

character in a �z position in the code. In this case, the code

will have the structure

and 3 is the reversed " code. The Seitz operator will be

�11 ¼ ðePIPI; j0>Þ ð34Þ

and the eigenvector equation to be solved is

bPPIjb> ¼ jb>: ð35Þ

6.4. Codes containing a �22�22 (mirror) symmetry operation

The codes containing a mirror operation at the centre of the

code will be of the form

the symmetry operator will be represented by

�22 ¼ ðePIPI; j1>Þ ð36Þ

and the eigenvector equation to be solved for counting

purposes is

�bPPIjb> ¼ jb>: ð37Þ

Although the symmetry operation given by (36) exists for any

value of P, the structure of the code formed by two blocks, one

the negated of the other, will force the codes with such

symmetry to have length an even number P.
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Figure 2
Number of non-equivalent sequences of length P with a single symmetry
operation other than the identity (only values different from zero are
shown). Scale is log2.



The appearance of only one of the symmetry operations

described above, together with the symmetries describing the

hexagonal-close-packed planes, will lead to the space groups

R3m for 31, P63mc for 63, P�33m1 for �11 and P�66m2 for �22. When

only the identity symmetry is present (threefold axis), we will

be dealing with a code belonging to space group

P3m1.

Fig. 2 shows the number of polytypes with only one

symmetry operation for increasing length P, calculated from

the corresponding eigenvector problem. From the figure, it can

be observed that the 31 operation has the smallest number of

codes for large values of P. It can then be said that the 31

symmetry is the symmetry operation that imposes the largest

restriction over the code structure. In decreasing order of

restriction, after the 31 operation follows the 63 symmetry. The
�11 and �22 operations impose the same degree of restriction,

while the least restrictive is of course the 3 (identity)

symmetry. The fact that most codes do not possess any addi-

tional symmetry at all points to the known result in Kolmo-

gorov complexity analysis that, for a given code length, the

majority of the codes will be completely random strings (Li &

Vitányi, 1993).

6.5. Codes containing a combination of symmetry operations

The combination of the symmetry elements discussed above

will lead to the remaining space groups:
* Symmetry operations 31 and �11 (R�33m):

The codes must comply at the same time with the structures

and

which immediately leads to codes of the type

The j111> code is a special case of this symmetry. If the

metric tensor of the arrangement meets the cubic constraints,

this sequence leads to the Fm�33m space group, which still

contains the 31 and �11 symmetry. This code, on the other hand,

is only composed of three characters and each character is a

block by itself, symmetrically equivalent to the other two. This

last property contrasts with any other vector in the same

group, which will have blocks composed of several characters;

characters within a block do not have to be symmetrically

equivalent with each other. The special condition that each

character is a block by itself, symmetry equivalent to the other

characters in the vector, is pointing to the fact that in this

arrangement every layer is symmetry equivalent to any other

layer in the stack.

* Symmetry operations 63 and �22 (P63=mmc):

The codes must comply at the same time with the structures

and

which leads to

This code can be rotated 1=4 of the periodicity and written as

If we compare this last code structure to the structure of the

codes with �11 symmetry, the appearance of the inversion

symmetry is immediately apparent, as a result of the combi-

nation of 63 and �22 operations. The �11 operation appears at 1=4

of the mirror operation. The P63=mmc space group is

centrosymmetric. We will represent the �11 operation by a

dashed vertical line.

The j10> code belonging to the hexagonal-close-packed

sequence belongs to this space group. Again, as in the face-

centred cubic code, the hexagonal-close-packed code is

composed of two characters, each being a separate block

symmetrically equivalent to the other. In this arrangement

too, every layer is symmetrically equivalent to any other layer

in the stack.
* Symmetry operations 31 and �22:

This will lead to a code of the type

which will have a representative code
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Figure 3
Group–subgroup relations among the close-packed codes. Subgroups
appear below the supergroup and are connected by a solid line



the same as the P�66m2 space group.
* Symmetry operations 31 and 63:

This will lead to a code of the type

which will have as representative code

and we are dealing with the P63mc space group.

This will exhaust all possible combinations.

The group–subgroup relations can be immediately deduced

by inspection of the code structures and this is shown in Fig. 3

The procedure for counting the number of polytypes

belonging to each space group is straight forward: for each of

the symmetry elements present in the symmetry group, several

of the eigenvector equation (31), (33), (35) or (37) will hold.

The simultaneous compliance with the symmetry eigenvector

equations together with (19) will lead to the number of codes

belonging to the corresponding space group, after subtracting

redundant sequences.

The best procedure for counting is to start with the higher

supergroups and proceed along the subgroup relation. In this

way, we can take into account that the eigenvector solution

contains the number of codes belonging to the supergroup,

already counted and therefore redundant.

Fig. 4 shows the number of polytypes belonging to each

space group for increasing P values.

7. Conclusions

The systematic use of binary coding together with Seitz

operators acting over the binary field can be used to study

close-packed sequences. The algebraic approach, as well as

that of McLarnan (1981), is of more general use in

enumeration problems than that of Iglesias (1981). The

method presented here avoids the necessity of involved group-

theoretical considerations to solve counting problems in

polytypes. The coding approach also allows the symmetry

group of stacking sequences to be derived as a natural result of

code symmetry. The examples presented in the paper should

show the power of this approach. Further developments can

include the extension to non-periodic stacking sequences.
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